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Abstract—As an integral part of the Decentralized Finance
(DeFi) ecosystem, Automated Market Maker (AMM) based
Decentralized Exchanges (DEXs) have gained massive traction
with the revived interest in blockchain and distributed ledger
technology in general. Most prominently, the top six AMMs—
Uniswap, Balancer, Curve, DODO, Bancor and Sushiswap—
hold in aggregate 15 billion USD worth of crypto-assets as
of March 2021. Instead of matching the buy and sell sides,
AMMs employ a peer-to-pool method and determine asset
price algorithmically through a so-called conservation function.
Compared to centralized exchanges, AMMs exhibit the appar-
ent advantage of decentralization, automation and continuous
liquidity. Nonetheless, AMMs typically feature drawbacks such
as high slippage for traders and divergence loss for liquidity
providers. This work establishes a general AMM framework
describing the economics and formalizing the system’s state-space
representation. We employ our framework to systematically com-
pare the top AMM protocols’ mechanics, deriving their slippage
and divergence loss functions. We further discuss security and
privacy concerns associated with AMM DEXs, and conduct a
comprehensive literature review on related work covering both
DeFi and conventional market microstructure.

Index Terms—Decentralized Finance, decentralized exchange,
automated market maker, blockchain, Ethereum

I. INTRODUCTION

A. Background

With the revived interest in blockchain and cryptocurrency
among both the general populace and institutional actors, the
past year has witnessed a surge in crypto trading activity and
increasing competition and accelerated development in the
Decentralized Finance (DeFi) space.

Among all the prominent DeFi applications, Automated
Market Makers (AMM) based Decentralized Exchanges
(DEXs) are on the ascendancy, with an aggregate value locked
exceeding 15 billion USD at the time of writing.1 Different
from order-book based exchanges where the market price
of an asset is determined by the last matched buy and sell
orders, each AMM uses a so-called conservation function that
determines asset price algorithmically by only allowing the
exchange rates to move along predefined trajectories which
are conditioned upon the quantities of available assets. AMMs
implement a peer-to-pool method, where liquidity providers
contribute assets to liquidity pools while individual users
exchange assets with a pool containing both the input and
the output assets. Exchange users obtain immediate liquidity
without having to find an exchange counterparty first, whereas

1https://defipulse.com/

liquidity providers benefit from asset supply with exchange
fees from pool users. Furthermore, maintaining the state of
an order book is computationally expensive, which is costly
given the native price mechanism on the Ethereum blockchain.
While this problem is minimized by keeping the order books
off-chain, DEX with AMMs allows for more accessible liq-
uidity provision, especially for low-liquid assets.

Despite apparent advantages such as decentralization, au-
tomation and continuous liquidity, AMMs are often charac-
terized by high slippage with asset exchange and divergence
loss with liquidity provision. Throughout the last three years,
new protocols have been introduced to the market one after
another with incremental improvements and the attempt to
tackle different issues which were identified as weak spots
in a previous version.

While innovative on certain aspects, the various AMM
protocols generally consist of the same set of composed
mechanisms to allow for multiple functionalities of the system.
Therefore these systems are structurally similar, and their
main differences lie in parameter choices and/or mechanism
adaptations. Describing a class of mechanisms that defines
the characteristics of an AMM allows assessing the differences
of design choices and their impacts on the system to conse-
quently discuss the structural composition of AMMs and make
statements about their stability for different market conditions.

B. Contributions

This work establishes a taxonomy of the major components
of an AMM focusing on stakeholder roles, asset types, mech-
anisms, metrics and attack vectors. This framework is used
for a comparative analysis of selected projects by comparing
slippage and divergent loss functions of example protocols.

This work represents the first systematization of knowledge
in AMM-based DEXs with deployed protocol examples to the
best of our knowledge.

II. AMM PRELIMINARIES

This section presents a taxonomy of the main components
across major decentralized exchanges [1]. To guide the fol-
lowing formal definitions, Uniswap can be used as an intuitive
example. This protocol allows exchanging two tokens via the
use of one liquidity pool containing both assets. A constant
product function is parametrized at the time of pool inception,
defining a number that has to hold true as the product of both
asset quantities for all future states of the system. This property
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determines the swap prices as any trade must uphold the
constant product under updated asset amounts in the pool. The
liquidity is provided to the pool by liquidity providers, which
receive a pool share representing their relative contribution to
the pool. The trading fee for token swaps is accumulated in
the pool and therefore acts as a reward for liquidity providers.
Other protocols extend this basic functioning, and their specific
components are discussed later in this paper.

A. Actors

a) Liquidity provider (LP): A liquidity pool creator is
the first liquidity provider (LP) when deploying a new smart
contract that acts as a liquidity pool with some initial supply of
crypto assets. Other LPs can subsequently increase the pool’s
reserve by adding more of the assets that are contained in the
pool. In turn, they receive pool shares proportionate to their
liquidity contribution as a fraction of the entire pool [2]. LPs
earn transaction fees paid by exchange users. While sometimes
subject to a withdrawal penalty, LPs can freely remove funds
from the pool [3] by surrendering a corresponding amount of
pool shares [2].

The liquidity pool must be initialized with two or more
different assets for the smart contract to parametrize the
conservation function and set the initial relative prices. Pool
creators initialize the pool with quantities that reflect the
market prices to avoid unnecessary divergence loss. The act
of liquidity provision or removal updates the value of the
conservation function invariant(s) (see Section III). Liquidity
providers are also called liquidity miners due to new protocol
tokens minted and distributed to them as a reward in addition
to pool shares when they supply funds. Like centralized
exchanges, an AMM-based DEX can facilitate an initial ex-
change offering to supply a new asset through liquidity pool
creation.

b) Exchange user (Trader): A trader submits an ex-
change order to a liquidity pool by specifying the input and
output asset and one associated quantity - the smart contract
will automatically calculate the exchange rate based on the
conservation function and execute the exchange order accord-
ingly. A fee is charged on top of each trade to compensate
liquidity providers for their capital provision.

c) Arbitrageurs: Arbitrageurs are a particular type of
exchange users who compare asset prices across different
markets to execute trades whenever closing price gaps can
extract profits. In doing so, arbitrageurs ensure consistency of
asset price in other decentralized, centralized, on-chain and
off-chain exchanges.

d) Protocol foundation: Protocol foundation consists of
protocol founders, designers, and developers responsible for
designing and improving the protocol. The development ac-
tivities are often funded directly or indirectly through accrued
earnings such that the foundation members are financially
incentivized to build a user-friendly protocol that can attract
high trading volume.

B. Assets

Several distinct sorts of assets are used in AMM protocols
for operations and governance. One or more assets can fulfil
several functionalities; one asset may assume multiple roles.

a) Risk assets: This is the primary type of asset for which
the protocol was designed: to provide liquidity in these assets,
to facilitate exchange between them and to allow liquidity
providers to earn rewards in return for their contribution. Typ-
ically many different risk assets are involved in one protocol -
they have to be whitelisted, compatible with the protocol and
fulfil the technical requirements (e.g. ERC202 for most AMMs
on Ethereum).

b) Base assets: For some protocols, a trading pair always
consists of a risk asset and a designated base asset. In the case
of Bancor, every risk asset is paired with BNT, the protocol’s
native token with an elastic supply [4]. In their early version,
Uniswap required every pool to be initiated with ETH as one
of the risk assets making it an obligatory base asset. Many
protocols, such as Balancer and Curve are managed without a
designated base asset as they connect two or more risk assets
directly in the composition of their portfolios.

c) Pool shares: Also known as “liquidity shares” and
“liquidity provider shares”, pool shares represent ownership
in the portfolio of assets within a pool, and are distributed
to liquidity providers. Shares qualify for the reception of fees
that are earned in the portfolio whenever a trade occurs. Shares
can be redeemed at any time to withdraw back the liquidity
initially provided.

d) Protocol tokens: Protocol tokens are used to represent
voting rights in a decision formation process defined in the
protocol and are thus also termed “governance tokens”. Pro-
tocol tokens are typically valuable assets that are sometimes
tradeable even outside of the AMM and can incentivize
participation. For example, they might be rewarded to liquidity
providers in proportion to their liquidity supply.

C. Fundamental AMM economics

1) Rewards: AMM protocols often run several reward
schemes, including liquidity reward, staking reward, gover-
nance rights, and security reward, distributed to different actors
to encourage participation and contribution.

a) Liquidity reward: Liquidity providers are rewarded for
supplying assets to a liquidity pool, as this can be deemed
service for the broader community for which they have to
bear the opportunity costs associated with funds being locked
in the pool. Liquidity providers receive their share of trading
fees paid by exchange users.

b) Staking reward: On top of the liquidity reward in the
form of transaction income, liquidity providers are offered the
possibility to stake certain tokens as part of an initial incentive
program from the token protocol. The ultimate goal of the
individual token protocols (see e.g. GIV [5] and TRIPS [6])
is to further encourage token holding, while simultaneously
facilitating token liquidity.

2https://eips.ethereum.org/EIPS/eip-20

https://eips.ethereum.org/EIPS/eip-20


c) Governance right: An AMM may encourage liquidity
provision and/or swapping by rewarding participants gover-
nance right in the form of protocol tokens (see II-B). AMMs
compete with each other to attract funds and trading volume.
To bootstrap an AMM in the early phase with incentivized
early pool establishment and trading, a feature called liquidity
mining can be installed where the native protocol’s tokens are
minted and issued to liquidity providers and/or exchange users.

d) Security reward: Just as every protocol built on top of
an open, distributed network, AMM-based DEXs on Ethereum
suffer from security vulnerabilities. Besides code auditing,
a common practice that a protocol foundation adopts is to
have the code vetted by a broader developer community and
reward those who discover and/or fix securities of the protocol
with monetary prizes, commonly in fiat currencies, through a
bounty program.

2) Explicit costs: Interacting with AMM protocols incurs
various costs, including charges for some form of “value”
created or “service” performed and fees for interacting with
the blockchain network. AMM participants need to anticipate
three types of fees: liquidity withdrawal penalty, swap fee and
gas fee.

a) Liquidity withdrawal penalty: As introduced in III-B
and demonstrated in Section IV later in this paper, withdrawal
of liquidity changes the shape of the conservation function
and negatively affects the usability of the pool by elevating
the slippage. Therefore, AMMs such as DODO [7] levy a
liquidity withdrawal penalty to discourage this action.

b) Swap fee: Users interacting with the liquidity pool
for token exchanges have to reimburse liquidity providers for
the supply of assets. This compensation comes in the form of
swap fees that are charged in every exchange trade and then
distributed to liquidity pool shareholders. A small percentage
of the swap fees may also go to the foundation of the AMM
to further develop the protocol.

c) Gas fee: Every interaction with the protocol is ex-
ecuted in the form of an on-chain transaction and is thus
subject to gas fee applicable to all transactions on the un-
derlying blockchain. In a decentralized network validating
nodes verifying transactions need to be compensated for their
efforts, and transaction initiators must cover these operating
costs. The paid gas fees depend on the price of, for example,
ETH and the gas price of the transaction chosen by the user.
The average gas price evolution shows that the gas fees are
becoming increasingly more substantial3 as a result of the
growing adoption of Ethereum. Compounded with the rising
ETH price and the complexity of AMM contracts, gas fees
must be taken into consideration when interacting with AMMs.

3) Implicit costs: Two essential implicit costs native to
AMM-based DEXs are slippage for exchange users and di-
vergence loss for liquidity providers.

a) Slippage: Slippage is defined as the difference be-
tween the spot price and the realized price of a trade and
is caused by the curve design of an AMM that dictates the

3https://ycharts.com/indicators/ethereum average gas price

asset prices. Instead of matching buy and sell orders, exchange
rates are determined on a continuous curve. Every trade on an
AMM-based DEX will always encounter slippage conditioned
upon the trade size, the pool amounts and the exact design
of the conservation function. The spot price approaches the
realized price for infinitesimally small trades, but they deviate
more for bigger trade sizes. This effect is amplified for smaller
liquidity pools as every trade will significantly impact the
relative quantities of assets in the pool and, therefore, higher
slippage.

b) Divergence loss: For liquidity providers, assets sup-
plied to a protocol are still exposed to volatility risk, which
comes into play in addition to the loss of time value of locked
funds. A swap alters the asset composition of a pool, which
automatically updates the asset prices implied by the conser-
vation function of the pool (Equation 3). This consequently
changes the value of the entire pool. Compared to holding the
assets outside of an AMM pool, contributing the same amount
of assets to the pool in return for pool shares can result in
less value with price movement, an effect termed “divergence
loss” or “impermanent loss” (see Section IV). This loss is
“impermanent” because as asset price moves back and forth,
the depreciation of the pool value disappears and reappears all
the time and is only realized when assets are actually taken
out of the pool.

Since assets are bonded together in an pool, changes of
prices in one asset affect all others in this pool. For an AMM
protocol that supports single-asset supply, this forces liquidity
providers to be exposed to risk assets they have not been
holding in the first place.

III. FORMALIZATION OF MECHANISMS

Overall, the functionality of an AMM can be generalized
formally by a set of few mechanisms. These mechanisms
define how users can interact with the protocol and what
the response of the protocol will be given particular user
actions. Action-related mechanisms dictate how providing and
withdrawing liquidity as well as swapping assets are executed
where protocol-related properties define how fees and rewards
are calculated. On top of that, there are some protocol-
specific mechanisms for governance and security, but the
aforementioned basic mechanisms are the same.

While all AMMs are similar in this basic functionality,
they have two ways of differentiating themselves and propose
improvements to existing protocols. The first option is to
take an existing implementation as given, copy and reuse all
mechanisms and adjust the fee and reward structure to change
the incentives and payouts of the protocol and by doing so,
potentially improve targeted user or protocol metrics. The
second option is to change the composition or functionality of
the mechanism or propose a new pool structure that will call
for major changes in how the protocol works. In this way, key
metrics can be improved as well but in a completely different
way.

https://ycharts.com/indicators/ethereum_average_gas_price
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Figure 1: Stylized AMM mechanism

A. State space representation

The functioning of any blockchain-based system can be
modeled using the state-space terminology. States and agents
constitute main system components; protocol activities are
described as actions (Figure 1); the evolution of the system
over time is modelled with state transition functions. This can
be generalized into a state transition function f encoded in the
protocol such that χ a−→

f
χ′, where a ∈ A represents an action

imposed on the system while χ and χ′ represent the current
and future states of the system respectively.

The object of interest is the state χ of the liquidity pool
which can be described with

χ = ({r′k}k=1,...,n, {pk}k=1,...,n, C,Ω) (1)

where rk denotes the quantity of token k in the pool, pk
the current spot price of token k, C the conservation function
invariant(s), and Ω the collection of protocol hyperparameters.
This formalization can encompass various AMM designs.

The most critical design component of an AMM is its
conservation function which defines the relationship between
different state variables and the invariant(s) C. The conser-
vation function is protocol-specific as each protocol seeks to
prioritize a distinct feature and target particular functionalities.
For example, Uniswap implements an elementary conservation
function that achieves a low gas fee; Balancer’s conservation
function links mul whereas Curve’s conservation function is
complex but guarantees low slippage (see Section IV).

The core of an AMM system state is the quantity of each
asset held in a liquidity pool. Their sums or products are
typical candidates for invariants. Examples of a constant-
sum market maker include mStable [8]. Uniswap [9] rep-
resents constant-product market makers, while Balancer [3]
generalizes this idea to a geometric mean. The Curve [10]
conservation function is notably a combination of constant-
sum and constant-product (see Section IV).

B. Liquidity change and asset swap

Hyperparameter set Ω is determined at pool creation and
shall remain the same afterwards. While this value of hy-
perparameters might be changed through protocol governance
activities, this does not and should not occur on a frequent
basis.

Invariant C, despite its name, refers to the pool variable that
stays constant only with swap actions but changes at liquidity
provision and withdrawal. In contrast, trading moves the price
of traded assets; specifically, it increases the price of the output
asset relative to the input asset, reflecting a value appreciation
of the output asset driven by demand. Liquidity provision and
withdrawal, on the other hand, should not move the asset price.

General rules of AMM-based DEX
1) The price of assets in an AMM pool stays constant

for pure liquidity provision and withdrawal activi-
ties.

2) The invariant of an AMM pool stays constant for
pure swapping activities.

Formally, the state transition induced by pure liquidity
change and asset swap can be expressed as follows.

({rk}k=1,...,n, {pk}k=1,...,n, C,Ω)
liquidity change−−−−−−→

f
({r′k}k=1,...,n, {pk}k=1,...,n, C′,Ω) (2)

({rk}k=1,...,n, {pk}k=1,...,n, C,Ω)
swap−−→
f

({r′k}k=1,...,n, {p′k}k=1,...,n, C,Ω) (3)

Note that protocol-specific intricacies may result in asset
price change with liquidity provision/withdrawal, or invariant
C update with trading.

The asset spot price can remain the same only when assets
are added to or removed from a pool proportionate to the
current reserve ratio (r1 : r2 : ... : rn). Disproportionate
addition or removal can be treated as a combination of two
actions: proportionate reserve change plus asset swap, such as
with Balancer [3]. Therefore, this action is no longer a pure
liquidity provision/withdrawal and would thus move the asset
spot price.

Specific fee mechanisms also cause invariant C to become
variant through trading. Specifically, when trading fees are
kept within the liquidity pool, a trading action can be decom-
posed into asset swap and liquidity provision. This action is,
therefore, no longer a pure asset swap and would thus move
the value of C (see e.g. [11]). Also, as float numbers are not yet
fully supported by Solidity [12]—the language for Ethereum
smart contracts, AMM protocols typically recalculate invariant
C after each trade to minimize the accumulation of rounding
errors.

C. Generalized formulas

In this section, we generalize AMM formulas necessary
for demonstrating the interdependence between various AMM
state variable, as well as for computing slippage as well as
divergence loss. Mathematical notations and their definitions
can be found in Table I.



Table I: Mathematical notations for pool mechanisms

Notation Definition Applicable protocols

Preset hyperparameters, Ω
wk Weight of asset reserve rk Balancer
A Slippage controller Uniswap V3, Curve, DODO

State variables
C Conservation function invariant all
rk Quantity of tokenk in the pool all
pk Current spot price of tokenk all

Process variables
xi Input quantity added to reserve

of tokeni (removed when xi <
0)

all

ρ Token value change all

Functions
C Conservation function all
Z Implied conservation function all
iEo tokeno price denominated in

tokeni
all

S Slippage all
V Reserve value all
L Divergence loss Uniswap, Balancer, Curve

1) Conservation function: An AMM conservation function,
also termed “bonding curve”, can be expressed explicitly as
a relational function between AMM invariant and reserve
quantities {rk}k=1,...,n:

C = C({rk}) (4)

A conservation function for each token pair, say ri—r0,
must be concave, nonnegative and nondecreasing [13] (see
also Figure 3). For complex AMMs such as Curve, it might
be convenient to express the conservation function implicitly
in order to derive exchange rates between two assets in a pool:

Z({rk}; C) = C({rk})− C = 0 (5)

2) Spot exchange rate: The spot exchange rate between
tokeni and tokeno can be calculated as the slope of the ri—ro
curve (see examples in Figure 3) using partial derivatives of
the conservation function Z.

iEo({rk}; C) =
∂Z({rk}; C)/∂ro
∂Z({rk}; C)/∂ri

(6)

Note that iEo = 1 when i = o.
3) Swap amount: The amount of tokeno received xo (spent

when xo < 0) given amount of tokeni spent xi (received when
xi < 0) can be calculated following the steps below.

a) Update reserve quantities: Input quantity xi is simply
added to the existing reserve of tokeni; the reserve quantity
of any token other than tokeni or tokeno stays the same:

r′i := Ri(xi; ri) = ri + xi (7)
r′j = rj , ∀j 6= i, o (8)

b) Compute new reserve quantity of tokeno: The new
reserve quantity of all tokens except for tokeno is known from
the previous step. One can thus solve r′o, the unknown quantity
of tokeno, by plugging it in the conservation function:

Z({r′k}; C) = 0 (9)

Apparently, r′o can be expressed as a function of the original
reserve composition {rk}, input quantity xi, namely,

r′o := Ro(xi, {rk}; C) (10)

c) Compute swapped quantity: The quantity of tokeno
swapped is simply the difference between the old and new
reserve quantities:

xo := Xo(xi, {rk}; C) = ro − r′o (11)

4) Slippage: Slippage measures the deviation between ef-
fective exchange rate xi

xo
and the pre-swap spot exchange rate

iEo, expressed as:

S(xi, {rk}; C) =
xi/xo

iEo
− 1 (12)

5) Divergence loss: Divergence loss describes the loss in
value of the all reserves in the pool compared to holding
the reserves outside of the pool, after a price change of
an asset. Based on the formulas for spot price and swap
quantity established above, the divergence loss can generally
be computed following the steps described below. In the
valuation, we assign tokeni as the denominating currency for
all valuations. While the method to be presented can be used
for multiple token price changes through iterations, we only
demonstrate the case where only the value of tokeno increases
by ρ, while all other tokens’ value stay the same. Tokeni is
the numéraire. Designating one of the tokens in the pool as a
numéraire can also be found in DeFi simulation papers such
as [13].

a) Calculate the original pool value: The value of the
pool denominated in tokeni can be calculated as the sum of
the value of all token reserves in the pool, each equal to the
reserve quantity multiplied by the exchange rate with tokeni:

V ({rk}; C) =
∑
j

iEj({rk}; C) · rj (13)

b) Calculate the reserve value if held outside of the pool:
If all the asset reserves are held outside of the pool, then a
change of ρ in tokeno’s value would result in a change of ρ
in tokeno reserve’s value:

Vheld(ρ; {rk}, C) = V ({rk}; C) + [jEo({rk}; C) · ro] · ρ

c) Obtain re-balanced reserve quantities: Exchange
users and arbitrageurs constantly re-balance the pool through
trading in relatively “cheap”, depreciating tokens for relatively
“expensive”, appreciating ones. As such, asset value move-
ments are reflected in exchange rate changes implied by the
dynamic pool composition.

Therefore, the exchange rate between tokeno and each other
tokenj (j 6= o) implied by new reserve quantities {r′k},
compared to that by the original quantities {rk}, must satisfy
equation sets 14. At the same time, the equation for the
conservation function must stand (Equation 15).

ρ =
jEo({r′k}; C)
jEo({rk}; C)

− 1, ∀j 6= o (14)

0 = Z({r′k}; C) (15)



Table II: Comparison Table of discussed DEXs: value locked,
trade volume of the past 7 days, the market share by the last 30
days volume, the governance token, the number of governance
token holders and the fully diluted value, as on 15 April 2021.
Data retrieved from DeFi Pulse and Dune Analytics on 22
March 2021.

Protocol Value locked Trade volume Market Governance Governance Fully diluted value
(billion USD) (billion USD) (%) token token holders (billion USD)

Uniswap 6.30 6.99 53.8 UNI 212,506 37.4
Sushiswap 4.26 1.99 15.4 SUSHI 43,306 3.78
Curve 5.33 1.89 14.6 CRV 28,669 4.89
Bancor 1.96 0.66 5.1 BNT 38,881 1.37
Balancer 2.33 0.46 3.6 BAL 34,225 2.8
DODO 0.07 0.15 1.16 DODO 9,568 5.0

A total number of n-equations (n−1 with equation sets 14,
plus 1 with Equation 15) would suffice to solve n unknown
variables {r′k}k=1,...,n, each of which can be expressed as a
function of ρ and {rk}:

r′k := Rk(ρ, {rk}; C) (16)

d) Calculate the new pool value: The new value of the
pool can be calculated by summing the products of the new
reserve quantity multiplied by the new price (denominated by
tokeni) of each token in the pool:

V ′(ρ, {rk}; C) =
∑
j

iEj({r′k}; C) · r′j (17)

e) Calculate the divergence loss: Divergence loss can be
expressed as a function of ρ, the change in value of an asset
in the pool:

L(ρ, {rk}; C) =
V ′(ρ, {rk}; C)
Vheld(ρ; {rk}, C)

− 1 (18)

IV. COMPARISON OF AMM PROTOCOLS

AMM-based DEXs are home to billions of dollars worth
of on-chain liquidity. Table II lists major AMM protocols,
their respective value locked, as well as some other general
metrics. Uniswap is undeniably the biggest AMM measured
by trade volume, as confirmed by the volume growth dis-
played in Figure 2a, and the number of governance token
holders, although it is remarkable that Sushiswap has more
value locked within the protocol. The number of governance
token holders of smaller protocols as Bancor and Balancer is
relatively significant compared to Curve token holders, as they
do approximately half of the volume but have 25 to 50% more
governance token holders.

A. Major AMM protocols

This section focuses on the four most representative AMMs:
Uniswap (including V2 and V3), Balancer V1, Curve, and
DODO. Figure 2 shows an increasing trend over those AMMs.
While Curve only has 17 pools at the moment of writing,
Uniswap has over 30,000. DODO is relatively new but already
showcases around 200% growth compared to the start of 2021
in terms of volume.

We describe the liquidity pool structures of those protocols
in the main text. We also derive the conservation function,
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Figure 2: Monthly volume and the total pool count for AMMs. Data
from The Graph and Dune Analytics.

slippage, as well as divergence loss of those protocols. A
summary of formulas can be found in Table III. We refer
our readers to Appendix A for a detailed explanation and
derivation of those formulas. The protocols’ conservation
function, slippage, as well as divergence loss under different
hyperparameter values are plotted in in Figure 3, Figure 4 and
Figure 5, respectively. We always use token1 as price or value
unit; namely, token1 is the assumed numéraire.

1) Uniswap V2: The Uniswap protocol prescribes that a
liquidity pool always consists of one pair of assets. The pool’s
smart contract always assumes that the reserves of the two
assets have equal value. Uniswap implements a conservation
function with a constant-product invariant.

2) Uniswap V3: Uniswap V3 enhances Uniswap V2 by
allowing liquidity provision to be concentrated on a fraction of
the bonding curve, thus virtually amplifying the conservation
function invariant and reducing the slippage. Uniswap V3 is
a special case of the Uniswap V2 with the slippage controller
A →∞ (Figure 3a).

3) Balancer: The Balancer protocol allows each liquidity
pool to have more than two assets [3]. Each asset reserve rk is
assigned with a weight wk at pool creation, where

∑
k

wk = 1.

Weights are pool hyperparameters and do not change with
either liquidity provision/removal or asset swap. The weight
of an asset reserve represents the value of the reserve as a
fraction of the pool value. Balancer can also be deemed a
generalization of Uniswap; the latter is a special case of the
former with w1 = w2 = 1

2 (Figure 3b).
4) Curve: With the Curve protocol, formerly StableSwap

[10], a liquidity pool consists of two or more assets with
the same peg, for example, USDC and DAI, or wBTC and
renBTC. Curve approximates Uniswap V2 when its constant-
sum component has a near-0 weight (Figure 3c).

5) DODO: DODO only supports 2-asset liquidity pools at
the moment. The pool creator opens a new pool with some
reserves on both sides, which determines the pool’s initial
equilibrium state.

Notably, the pool permanently anchors the exchange rate
between the two assets to the external data fed by a price
oracle. Thus, unlike Uniswap, where their reserve quantities
imply asset exchange rates, DODO allows the reserve ratio
between the two assets within a pool to be arbitrary while still
maintaining the asset exchange rate close to the market rate.
Due to this feature, DODO differentiates itself from traditional
AMMs and terms their pricing algorithm as the “Proactive
Market Making” algorithm, or PMM.

https://defipulse.com/
https://duneanalytics.com/hagaetc/dex-metrics
https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984
https://etherscan.io/token/0x6b3595068778dd592e39a122f4f5a5cf09c90fe2
https://etherscan.io/token/0xD533a949740bb3306d119CC777fa900bA034cd52
https://etherscan.io/token/0x1f573d6fb3f13d689ff844b4ce37794d79a7ff1c
https://etherscan.io/token/0xba100000625a3754423978a60c9317c58a424e3d
https://etherscan.io/token/0x43Dfc4159D86F3A37A5A4B3D4580b888ad7d4DDd
https://thegraph.com/explorer/
https://duneanalytics.com/hagaetc/dex-metrics


Table III: Function comparison table of Uniswap, Balancer, Curve and DODO. Formulas are derived in Appendix A. Conservation functions are visualized in
Figure 3, slippage functions in Figure 4 and divergence loss functions in Figure 5.
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(a) Uniswap V2 & 3, Equation 19
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(b) Balancer, Equation 36
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(c) Curve, Equation 44
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(d) DODO, Equation 50

Figure 3: Conservation function of different AMMs

B. Other AMM protocols

1) Sushiswap: Sushiswap is a fork of Uniswap, though the
two mainly differ in governance token structure and user ex-
perience. The conservation function, slippage and divergence
loss are identical to the Uniswap protocol.

In August 2020, Sushiswap gained a considerable portion
of Uniswap’s liquidity by conducting a so-called “vampire
attack”, where Sushiswap users were incentivized to provide
Uniswap liquidity tokens into the Sushiswap protocol and
rewarding them with SUSHI tokens [14]. After Uniswap
launched UNI and its corresponding liquidity mining program,
Uniswap is back on track with its growth schedule. Neverthe-
less, as shown in Table II, Sushiswap remains a popular choice
for users to deposit their funds.

2) QuickSwap: Previous sections only cover AMMs on
the Ethereum native blockchain, but AMM protocols also
gain popularity on Ethereum sidechains. QuickSwap [15] is
a Uniswap clone that went live in February 2021 on Polygon
(previously Matic Network). Polygon [16] is a protocol and
framework for building and connecting Ethereum-compatible
blockchain networks, called a “Layer 2 aggregator” of multiple
“Layer 2 solutions” such as Optimistic Rollups and zkRollups.
TVL on QuickSwap has reached more than $100M in March
2021, with 24h volumes peaking at $30M decreasing to $10M
at the beginning of April [17].

3) Bancor V2.1: While Bancor’s white paper [18] gives the
impression that a different conservation function is applied,
a closer inspection of their transaction history and smart
contract leads to the conclusion that Bancor is using the same
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Figure 4: Slippage function of different AMMs

formula as Balancer.4 As the vast majority of bancor pools
consist of two assets, one of which is usually BNT, with the
reserve weights of 50%–50%, Bancor’s swap mechanism is
equivalent to Uniswap. Bancor V2.1 now allows single-sided
asset exposure, and provides divergence loss insurance [19]
(see IV-B4c).

4) Additional AMM features:
a) Time component: A time component refers to the

ability to change traditionally fixed hyperparameters over time.
Balancer V1 and V2 implement this (Table IV), by allowing
liquidity pool creators to set a scheme that changes the weights
of two pool assets over time. This implementation is called a
Liquidity Bootstrapping Pool and is discussed in IV-C.

b) Dynamic swap fee: Dynamic fees are introduced by
Kyber 3.0 to reduce the impact of divergence loss for LPs.
The idea is to increase swap fees in high-volume markets
and reduce them in low-volume markets. This should result
in more protection against divergence loss, as during periods
of sharp token price movements during a high-volume mar-
ket, LPs absorb more fees. In low-volume and low-volatility
markets, trading is encouraged by lowering the fees.

c) Divergence loss insurance: Popularized by Bancor
V2.1, LPs are insured against impermanent loss after 100
days in the pool, with a 30-day cliff at the beginning. Bancor
achieves this by using an elastic BNT supply that allows
the protocol to co-invest in pools and pay for the cost of
impermanent loss with swap fees from its co-investments [20].
This insurance policy is earned over time, 1% each day that
liquidity is staked in the pool.

4This has been confirmed by a developer in the Bancor Discord community



Table IV: Overview of important existing AMM protocols on Ethereum, Solana, Polkadot, Tezos and EOS. CS = Constant-Sum,
CP = Constant-Product, OP = Oracle price component, CC = Capital concentration, TD = Time component.

Conservation function AMM add-ons Associated Attacks

Protocol Pool CP CS OP CC T Divergence loss Flash loan Vampire Chain Mainnet
structure compensation attack attack launch

Uniswap V1 [21] asset-pair  # # # # — [22] — Ethereum 11/2018

Uniswap V2 [23] asset-pair  # # # # — [24], [25],
[26], [27] — Ethereum 05/2020

Uniswap V3 [28] asset-pair  # #  # — — — Ethereum 05/2021
Balancer V1 [3] multi-asset  # # #  — [29] — Ethereum 03/2020
Balancer V2 [30] multi-asset  # # #  — — — Ethereum —
Curve [10] multi-asset   # # # — [24], [26] — Ethereum 01/2020
DODO [7] single-asset  #  # # — — — Ethereum, BSC 09/2020
Bancor V1 [18] asset-pair  # # # # — — — Ethereum, EOS 06/2017
Bancor V2 [19] asset-pair  #  # # — — — Ethereum, EOS 04/2020

Bancor V2.1 [4] asset-pair  # # # # Divergence loss
insurance — — Ethereum, EOS 10/2020

SushiSwap [14] asset-pair  # # # # — [26], [27] [31] Ethereum 08/2020
Mooniswap [32] asset-pair  # # #  — — — Ethereum 08/2020
mStable [8] asset-pair #  # # # — — — Ethereum 07/2020

Kyber 3.0 [33] multi-asset  # #  # Dynamic
swap fee — — Tezos —

StableSwap [34] multi-asset   # # # — — — Solana —
TrueSwap [35] asset-pair  # # # # — — — Tron —
HydraDX [36] multi-asset  #   # — — — Polkadot —
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Figure 5: Divergence loss of different AMMs

C. DeFi protocols with AMM implementations

AMMs form the basis of other protocols that implement
existing or invent newly designed bonding curves, facilitating
the functionalities of these implementing protocols. In this
section, we present few examples of projects that use AMM
designs under the hood.

1) Gyroscope Protocol: Gyroscope Protocol [37] is a sta-
blecoin backed by a reserve portfolio that diversifies all DeFi

risks. Gyro Dollars can be minted for a price near $1 and
can be redeemed for an amount worth of near $1 in reserve
assets, as determined through a new Automated Market Maker
(AMM) design that balances risk in the system.

Gyroscope includes a Primary-market AMM (P-AMM),
through which Gyro Dollars are minted and redeemed, and a
Secondary-market AMM (S-AMM) for Gyro Dollar trading.
Similar to Uniswap V3, where a price range constraint is
imposed. The P-AMM yields a mint quote and a redeem quote
that serves as a price range constraint for the S-AMM to decide
upon concentrated liquidity ranges [38].

2) EulerBeats: EulerBeats [39] is a protocol that issues
limited edition sets of algorithmically generated art and music,
based on the Euler number and Euler totient function. The
project uses self-designed bonding curves to calculate burn
prices of music/art prints, depending on the existing supply.
The project thus implements a form of AMM to mint and burn
NFTs price-efficiently.

3) Pods Finance: Pods [40] is a decentralized non-custodial
options protocol that allows users to create calls and or puts
and trade them in the Options AMM. Users can participate
as sellers and buy puts and calls in a liquidity pool or act
as liquidity providers in such a pool. The specific AMM is
one-sided and built to facilitate an initially illiquid options
market and price option algorithmically using the Black-
Scholes pricing model. Users can effectively earn fees by
providing liquidity, even if the options are out-of-the-money,
reducing the cost of hedging with options.

4) Balancer Liquidity Bootstrapping Pool: Liquidity Boot-
strapping Pools (LBPs) are pools where controllers can change
the parameters of the pool in controlled ways, unlike im-
mutable pools described in section Section IV. The idea of
an LBP is to launch a token fairly, by setting up a two-token



pool with a project token and a collateral token. The weights
are initially set heavily in favour of the project token, then
gradually ”flip” to favour the collateral coin by the end of
the sale. The sale can be calibrated to keep the price more or
less steady (maximizing revenue) or declining to the desired
minimum (e.g., the initial offering price) [41].

5) YieldSpace: The YieldSpace paper [42] introduces an
automated liquidity provider for fixed yield tokens. A formula
called the ”constant power sum invariant” incorporates time
to maturity as input and ensures that the liquidity provider
offers a constant interest rate—rather than price—for a given
ratio of its reserves. fyTokens are synthetic tokens that are
redeemable for a target asset after a fixed maturity date [43].
The price of a fyToken floats freely before maturity, and that
price implies a particular interest rate for borrowing or lending
that asset until the fyToken ’s maturity. Standard AMM
protocols as discussed in Section IV are capital-inefficient. By
introducing the concept of a constant power sum formula, the
writers want to build a liquidity provision formula that works
in ”yield space” instead of ”price space”.

6) Notional Finance: Notional Finance [44] is a protocol
that facilitates fixed-rate, fixed-term crypto-asset lending and
borrowing. Fixed interest rates provide certainty and minimize
risk for market participants, making this an attractive protocol
among volatile asset prices and yields in DeFi. Each liquidity
pool in Notional refers to a maturity, holding fCash tokens
attached to that date. For example, fDai tokens represent a
fixed amount of DAI at a specific future date. The shape of the
Notional AMM follows a logit curve, to prevent high slippage
in normal trading conditions. Three variables parameterize
the AMM: the scalar, the anchor, and the liquidity fee [45].
The first and second mentioned allowing for variation in
the steepness of the curve and its position in a xy-plane,
respectively. By converting the scalar and liquidity fee to a
function of time to maturity, fees are not increasingly punitive
when approaching maturity.

7) Gnosis Custom Market Maker: The Gnosis CMM [46]
allows users to set multiple limit orders at custom price brack-
ets and passively provide liquidity on the Gnosis Protocol.
The mechanism used is similar to the Uniswap V3 structure,
although it allows for even more possibilities to market makers
by allowing them to choose price upper and lower limits and
a number of brackets within that price range. Uniswap V3
allows liquidity providers to solely choose the upper and lower
limits. Because users deposit funds to the assets at different
price levels specifically, this specific application behaves more
like a central limit order book than an AMM pool.

D. Discussion

If one needs to trade similarly priced assets, then Curve does
that the best. Suppose it concerns an ETF-like portfolio, which
automatically re-balances, Balancer will help. As mentioned
before, Balancer has the same slippage and divergence loss
formulas as Uniswap in case of an equal 0.5/0.5 split, while
Curve has almost identical formulas in case of A → 0,
as can be seen in Figure 5. On Balancer, when the user

Attack 1 Flash-loan-funded price oracle attack

1: Take a flash loan to borrow xA tokenA from a PLF,
whose value is equivalent to xB tokenB at market price.

2: Swap xA tokenA for xB − ∆1 tokenB on an AMM,
pushing the new price of tokenA in terms of tokenB down
to xB−∆2

xA
, where ∆2 > ∆1 > 0 due to slippage.

3: Borrow xA + ∆3 tokenA with xB − ∆1 tokenB as
collateral on a PLF that uses the AMM as their sole
price oracle. To temporarily satisfy overcollateralization,
xB−∆2

xA
< xB−∆1

xA+∆3
.

4: Repay the flash loan with xA tokenA.

deals with strongly unequally divided pool weights, the trade
size has a relatively high impact on the slippage compared
to a pool with equal weights, as is shown in Figure 4b.
Conversely, divergence loss is less impactful in that situation
since arbitrageurs are eating fewer profits from the liquidity
providers. In Curve, the bigger A is, the smaller the price
slippage should be, but the more significant the divergence
loss is in case of spot price changes, as shown in Figure 4c
and Figure 5c. It must be noted that because all assets in a
Curve pool are backed by the same asset, spot price changes
should have a low impact, since all assets in the pool are facing
that same spot price change. This is why Curve has an inherent
advantage when trading similar assets. From a theoretical point
of view, it seems like DODO can offer similar functionalities
as Curve, as seen in Figure 3 and Figure 4, but without having
the disadvantage of divergence loss for liquidity providers.
The one-to-one comparison of these protocols may not make
complete sense in some cases, such as when one compares
Curve and Uniswap, but it sheds light, nevertheless, on how
much better it is to trade stablecoins and similarly priced assets
on Curve.

V. SECURITY AND PRIVACY ISSUES WITH AMM
A. AMM-associated attacks

1) Oracle attack: At the end of 2020, a series of flash loan-
funded price oracle attacks caused exploits in numerous pro-
tocols. In this kind of attack, adversaries manipulate protocols
that use a DEX as their sole price oracle.

Following Attack algorithm 1, an attacker profits with
∆3 tokenA less any transaction fees incurred. The attack
temporarily distorts the price of tokenA relative to tokenB .
After the prices are arbitraged back, the attack would leave
the loan taken from step 3 undercollateralized, jeopardizing the
safety of lenders’ funds on PLF. Examples of such attacks are
exploits on Harvest finance [24], Value DeFi [26] and Cheese
bank [25].

This broken design can generally be fixed by either provid-
ing time-weighted price feeds, or using external decentralized
oracles. The first solution ensures that a price feed cannot be
manipulated within the same block, while the second solution
aggregates price data from multiple independent data providers
that add a layer of security behind the aggregation algorithm,
makes sure that prices are not easily manipulated.



2) Rug pull: The general idea of a rug pull is to lure
people into buying the coin with no value, subsequently
swapping this coin for ETH or another cryptocurrency with
value, as shown in Attack algorithm 2. One method is to
create a coin with the same name as an existing one. This
attracts a lot of attention since everyone wants to pick up the
coin at the lowest price possible. The coin is being bought
up, and the original liquidity provider swaps his fake coin
for ETH. There are other ways rug pulls are performed. One
of the co-authors of this paper was used as a marketing
pawn in one ploy. The creators of the fake token send it out
to several prominent people, creating false hype. Potential
buyers see that major buyers have purchased the token
and start buying themselves. They very quickly realize that
the token cannot be swapped back for ether. Sometimes,
the attackers let people trade the coin back for ether, but
only for a short period since they are running the risk of
losing money. One example of this is the RAM token (address:
0x90b7a437ddaf1d5686445b928da82d86dd447ec5).
The attacker extracted 24 ETH from the rug pull.

Attack 2 Rug Pull

1: Mint a new coin XYZ.
2: Create a liquidity pool with xXYZ XYZ and xETH ETH

(or any other valuable cryptocurrency) on an AMM, and
receive LP tokens.

3: Attract unwitting traders to buy XYZ with ETH from the
pool, effectively changing the composition of the pool.

4: Withdraw liquidity from the pool by surrendering LP
tokens, and obtain xXYZ −∆1 XYZ and xETH + ∆2 ETH,
where ∆1,∆2 > 0.

3) Frontrunning: Frontrunners place their trade immedi-
ately before someone else’s trade. These are usually the traders
that attempt to get the best price of a new coin before anyone
else. They then sell these coins onto the market. Almost all
Polkastarter IDOs are frontran on Uniswap. Each listing brings
the attacker at least $1 million in profits. Sometimes, the
attackers use Flashbots5 for this. Most of the time, they spam
the block in a fashion similar to how backrunners fill the
block. This is done to definitively achieve nonce index that
immediately follows the nonce of the transaction that unpauses
trading on Uniswap. The attacker buys up almost all of the
token supply. Since there is hype, this does not stop retailers
from buying at exorbitant prices. However, now the seller with
the most significant supply is the attacker, and he swaps the
purchased coin for ether supplied by the retail. These attacks
are incredibly vicious since they motivate more Polkastarter
IDOs. In a sense, this is value extraction from the Ethereum
blockchain.

A simple way to identify these attacks is to observe new
listings on Uniswap and observe the transaction immediately
following the unpause transaction in the ERC20 coin. You will

5https://github.com/flashbots/pm

find that the attacker will be on most of those buying at least
200-300 ETH worth of the just listed token.

Normal exchange users could set a low slippage tolerance to
avoid suffering from a price elevated by front-runners. How-
ever, an overly low slippage tolerance may lead a transaction
to fail, resulting in a waste of gas fee.

4) Backrunning: Backrunners place their trade immediately
after someone else’s trade. The attacker needs to fill up
the block with a large number of cheap gas transactions
to definitively follow the target’s transaction. In comparison,
frontrunning requires a single high valued transaction. Fron-
trunning is detrimental to the user, in contrast, backrunning
is detrimental to the network as a whole and so has more
negative externalities.6

There are a number of agents in this flow. There needs to
be a miner and / or the “extractor”. One way to extract the
value is for the miner to amend the order of the transactions
and place his. For example, a big trade on Uniswap with high
slippage will be sniped by placing the transactions around it.
See detailed example below.

Attack 3 Sandwich price attack

1: UserA wishes to purchase xA XYZ whose spot price is P1

on an AMM with gas fee g1.
2: UserB observes the mempool and sees the transaction
3: UserB front-runs by buying xB XYZ with a higher gas

fee g2 > g1 on the same AMM .
4: UserB and UserA’s transactions are executed sequentially

at respective average price of PB and PA, pushing XYZ’s
spot price up to P2, where P2 > PA > PB > P1 due to
slippage.

5: UserB back-runs by selling xB XYZ at an average price
of P ′B , with P2 > P ′B > PB due to slippage.

5) Sandwich attacks: Combing front- and back-running, an
adversary of a sandwich attack places his orders immediately
before and after the victim’s trade transaction. The attacker
uses front-running to cause victim losses, and then uses
back-running to pocket benefits. Zhou et al. [1] detail two
sandwich attacks that can occur on an AMM: one exchange
user attacking another, and an LP attacking an exchange user.

Attack algorithms 3 and 4 describe those two attacks.
6) Vampire attack: As mentioned in IV-B1, Sushiwap

launched in August 2020 as a fork of Uniswap and gained a
lot of traction by allowing users to deposit their Uniswap LP
tokens in Sushiswap in return for rewards, thereby siphoning
out liquidity from Uniswap, a sequence later called a “Vampire
Attack” [47].

In a first step of a Vampire attack, a new protocol B incen-
tives liquidity providers of another platform A to stake their
LP tokens into protocol B. In case of Sushiswap, Uniswap
LPs were rewarded with SUSHI tokens when they staked their
LP tokens into the Sushiswap protocol. In the second stage,
a migration of liquidity happens from protocol A to protocol

6https://github.com/ethereum/go-ethereum/issues/21350

https://github.com/ethereum/go-ethereum/issues/21350


Attack 4 Sandwich LP attack
1: UserA wishes to purchase xA tokenA with tokenB using

an AMM pool of rA tokenA and rB tokenB with gas fee
g1.

2: LPB observes the mempool and sees the transaction.
3: LPB front-runs by withdrawing liquidity k rA tokenA and
k rB tokenB with a higher gas fee g2 > g1.

4: LPB and UserA’s transactions are executed sequentially,
resulting in a new composition of the pool with (1−k)rA+
xA tokenA and (1− k)rB − xB tokenB .

5: LPB back-runs by re-providing k rA tokenA and k ·
(1−k)rB−xB
(1−k)rA+xA

tokenB .

6: LPB back-runs by selling (1− (1−k)rB−xB
(1−k)rA+xA

) tokenB for
some tokenA

B. By doing this, protocol B now has sucked liquidity from
protocol A and moved it to its own contracts, giving access to
more volume and thus creating a more attractive proposition to
users. The migration process was executed by a smart contract
that took the Uniswap LP tokens in Sushiswap, converted
those to the represented liquidity on Uniswap, transferred the
assets to Sushiswap and got Sushiswap LP tokens in return.
Effectively, Sushiswap migrated liquidity from Uniswap to
Sushiswap on 9 September 2020 [31], thereby moving $830
million to the new born AMM. Users’ Uniswap LP tokens
got automatically replaced with Sushiswap LP tokens, repre-
senting the same liquidity. To encourage liquidity providers to
participate in the migration, Sushi continued to reward LPs
and users that were staking SUSHI.

B. Privacy concerns

On AMM DEX, security problems often go hand in hand
with privacy issues. Among the named attacks from the
previous section, the sandwich attacks are enabled by the
transparency and openness of public blockchains such as
Ethereum, where transactions are observable to everyone.
Against this backdrop, on-chain privacy-preserving services
and products are on the rise. For example, Blank [48], a
non-custodial Ethereum browser extension wallet, offers IP
protection and transaction obfuscation; Enigma [49] builds a
network of “secret nodes” that can perform computations on
encrypted data without the necessity to expose original raw
data.

C. Public information on attacks

We have found that the current MEV dashboard7 includes
but a tiny subset of maximum extractable value. Only single
transaction externalities are logged. Our experience showed
that initial coin listings are pulling at least the daily dashboard
quoted MEV alone. An exciting avenue would be to explore
this area more closely since that would mean highly optimistic
reported DEX volumes.

7https://explore.flashbots.net

VI. RELATED WORK

A. Blockchain-based DEXs

Our work is first and foremost related to the literature body
covering blockchain-based DEXs.

1) Security: Qin et al. [50] conduct empirical analyses on
various AMM attacks, including transaction (re)ordering and
front-running, and demonstrate the profitability in performing
transaction replay through a simple trading bot. Security risk
in terms of attack vectors in high-frequency trading on DEXs
are discussed in Zhou et al. [1], and Qin et al. [51]. Flash loan
attacks with the aid of AMMs on Ethereum are described in
Cao et al. [52], Perez et al. [53] and Wang et al. [54]. Victor
et al. [55] detect self-trading and wash trading activities on
order-book based DEXs. Gudgeon et al. [56] explore design
weaknesses and volatility risks in AMM DEXs.

2) Privacy: Angeris et al. [57] argue that privacy is im-
possible with typical constant-function market makers and
propose several mitigating strategies. Stone et al. [58] describe
a protocol that allows trustless, privacy-preserving cross-chain
cryptocurrency transfers but is yet susceptible to vampire
attacks.

3) Protocol mechanism: Angeris et al. [59] discuss arbi-
trage behaviour and price stability in constant product and
constant mean markets. Lo et al. [60] empirically evidence
that the simplicity of Uniswap ensures the ratio of reserves to
match the trading pair price. Despite historical oracle attacks
associated with AMMs (see Section V), Angeris et al. [59],
[61] show that constant-function-AMM users are incentivized
to correctly report the price of an asset, suggesting the suit-
ability for those AMMs to act as a decentralized price oracle
for other DeFi protocols. Angeris et al. [13] present a method
for constructing constant-function AMM whose portfolio value
functions match an arbitrary payoff.

B. DEX and AMM in the context of market microstructure

As two core topics of market microstructure [62], decen-
tralized exchange and market-making have been intensively
covered in the discipline of financial economics long before
the emergence of blockchain.

1) DEX: Existing literature primarily suggests the higher
efficiency of DEX markets over centralized ones.

Perraudin et al. [63] investigate decentralized forex markets
and conclude that DEXs are efficient when different market
makers can transact with each other and that decentralized
markets are more immune to crashes than centralized ones.
Nava [64] analyzes quantity competition in the decentralized
oligopolistic market and suggest perfect competition can be
approximated in large rather than small DEX markets. Mala-
mud et al. [65] develops an equilibrium model of general
DEX and prove that decentralized markets can more efficiently
allocate risks to traders with heterogeneous risk appetites than
centralized ones.

2) AMM: The concept of automated market making can
be traced back to Hanson’s logarithmic market scoring rules
(LMSR) [66], [67]. LMSR has since been refined and com-
pared to alternative market-making strategies.



Othman et al. [68] address non-sensibility to liquidity and
non-profitability of LMSR market making. They propose a
bounded, liquidity-sensitive AMM that runs with a profit by
levying transaction cost to subsidize liquidity, a strategy later
widely implemented by blockchain-based DEXs with AMM
protocols to compensate for divergence loss (see II-C3b) expe-
rienced by LPs. Brahma et al. [69] propose a Bayesian market
maker for binary markets which exhibit better convergent
behaviour at equilibrium than LMSR.

Jumadinova et al. [70] compare LMSR with different AMM
strategies, including myopically optimizing market-maker, re-
inforcement learning market maker and utility-maximizing
market maker. Simulating empirical market data, they find that
reinforcement learning-based AMM outperforms other strate-
gies in terms of maintaining low spread while simultaneously
obtaining high utilities. Slamka [71] compare LMSR with dy-
namic parimutuel market (DPM), dynamic price adjustments
(DPA) and an AMM by the Hollywood stock exchange (HSX)
in the context of prediction markets. They show that LMSR
and DPA generate the highest forecast accuracy and lowest
losses for market operators. Today, LMSR has become the de
facto AMM for prediction markets [72] and was adopted by
the Ethereum-based betting platform Augur [73].

Wang [72] compares mathematical models for AMMs,
including LMSR, liquidity sensitive LMSR (LS-LMSR) and
common constant-function AMMs, and proposes constant cir-
cle/ellipse based cost functions for superior computational ef-
ficiency. Capponi et al. [74] analyze the market microstructure
of constant-product AMMs, and predict that AMMs will be
used more for low-volatility tokens.

VII. CONCLUSION

The DeFi ecosystem is a relatively new concept, and inno-
vations within the space are being developed at an incredible
speed. AMMs are an incredible innovation sprung up by
the trustless, verifiable and censorship-resistant decentralized
Turing complete and global execution machine. As the use of
Decentralized Exchanges becomes increasingly crucial in the
industry of Decentralized Finance, it is essential to understand
how different flavours of those protocols may fit in a general
AMM framework and how the significant players differentiate
themselves given that framework.

We have systematized the knowledge around Automated
Market Makers during this research and applied that expertise
to several exchanges: Uniswap, Balancer, Curve and DODO
and made comments on other AMM protocols: Sushiswap,
QuickSwap, Bancor V2.1 and others. We use state-space rep-
resentation to formalize and generalize the AMM algorithms.
Existing protocols can be explored more in-depth using this
framework. Our research summarizes the economics and risks
in AMMs. We find that non-order book DEXs are highly
susceptible to a plethora of economic risks such as wash
trading, frontrunning, backrunning, sandwiching, rug pulling.

Future research into AMM mechanisms can build upon this
systematization of knowledge and establish unique ways for
differentiating and sustaining AMM innovations.

APPENDIX

A. Protocol formulas

1) Uniswap V2:
a) Conservation function: The product of reserve quan-

tity of token1, r1, and reserve quantity of token2, r2, stays
constant with swapping:

C = r1 · r2 (19)

b) Spot exchange rate: Given the equal value assumption
encoded in the pool smart contract, the implied spot price of
assets in a liquidity pool can be derived based on the ratio
between their reserve quantities. Specifically, denominated in
token 1, the price of token2 can be expressed as:

1E2 =
r1

r2
(20)

c) Swap amount: Based on the Uniswap conservation
function (Equation 19), the amount of token2 received x2

(spent when x2 < 0) given amount of token1 spent x1

(received when x1 < 0) can be calculated following the steps
described in III-C3:

r′1 = r1 + x1

r′2 =
C
r′1

x2 = r2 − r′2 (21)

d) Slippage: The slippage that a Uniswap user expe-
riences when swapping x1 token1 with x2 token2 can be
expressed as:

S(x1) =
x1/x2

1E2
− 1 =

x1

r1
(22)

Figure 4a illustrates the relationship between Uniswap slip-
page and normalized token1 reserve change x1

r1
.

e) Divergence loss: Given the equal value assumption
with Uniswap, the reserve value of token 1, V1, equals exactly
half of original value of the entire pool V (token1 being
numéraire):

V

2
= V1 = V2 = r1 (23)

Should a liquidity provider have held r1 token1 and r2

token2, then when token2 appreciates by ρ (depreciates when
ρ < 0), the total value of the original reserve composition
Vheld becomes:

Vheld = V + V2 · ρ = r1 · (2 + ρ) (24)

With r1 token1 and r2 token2 locked in a liquidity pool from
the beginning, their quantity ratio would have been updated
through users’ swapping to result in token2’s price change of
ρ. The equal value assumption still holds, and the updated
pool value V ′ becomes:

V ′

2
= V ′1 = V ′2 = r′1 = r1 ·

√
1 + ρ (25)



Note that r′2 = r2√
1+ρ

and p′ = (1+ρ)r1
r2

, which preserves
the invariance of C, and reflects the change in token2’s spot
exchange rate against token1.

As illustrated in Figure 3a, the divergence loss due to liq-
uidity provision as opposed of holding can thus be expressed
as a function of price change:

L(ρ) =
V ′

Vheld
− 1 =

√
1 + ρ

1 + ρ
2

− 1 (26)

2) Uniswap V3:
a) Conservation function: Suppose a liquidity provider

supplies C1 token1 and C2 token2, with the restriction that his
liquidity is only used for a specific range of exchange rates:
[ C1C2·A ,

C1·A
C2 ] where A > 1 and the initial exchange rate equals

C1
C2 . The shape of the conservation function is then identical to
liquidity provision of the following amounts under Uniswap
V2:

requiv
1 =

C1
1− 1√

A

and requiv
2 =

C2
1− 1√

A

The bonding curve of a Uniswap V3 pool is equivalent to
that of a Uniswap V2 one moving left along the x-axis by
(requiv

1 −C1) and down along the y-axis by (requiv
2 −C2). Thus,

Uniswap V3 conservation function can be expressed as:

[r1 + (requiv
1 − C1)] · [r2 + (requiv

2 − C2)] = requiv
1 · requiv

2(
r1 +

C1√
A− 1

)
·
(
r2 +

C2√
A− 1

)
=
A · C1 · C2
(
√
A− 1)2

(27)

where 0 ≤ r1 ≤ C1 · (
√
A+ 1) and 0 ≤ r2 ≤ C2 · (

√
A+ 1).

b) Exchange rate:

1E2 =
r1 + C1√

A−1

r2 + C2√
A−1

(28)

Note that when token1 is depleted, i.e. r1 = 0, then

r2 + C2√
A−1

= A·C2√
A−1

1E2 = C1
C2·A

Similarly, when token2 is depleted, i.e. r2 = 0, then 1E2 =
C1
C2·A

c) Swap amount: The swap amount can be derived from
the conservation function Equation 27:

r′1 = r1 + x1

r′2 = C1C2
(1− 1√

A
)2

/(
r′1 + C1√

A−1

)
− C2√

A−1

x2 = r2 − r′2 (29)

d) Slippage: The slippage should have the same magni-
tude as in Uniswap V2, but with r1 amplified by an increase
of C1√

A−1
:

S(x1) =
x1/x2

1E2
− 1 =

x1

r1 + C1√
A−1

(30)

e) Divergence loss: Using the intermediary results from
A1e, we can easily derive Vheld, r′1 and r′2, and subsequently
V ′:

Vheld = C1 · (2 + ρ) (31)

r′1 = requiv
1

√
1 + ρ− C1√

A−1
=
C1·(
√

1+ρ− 1√
A

)

1− 1√
A

r′2 =
requiv
2√
1+ρ
− C2√

A−1
=
C2( 1√

1+ρ
− 1√
A

)

1− 1√
A

V ′ = V ′1 + V ′2 = r′1 +
C1(1+ρ)r′2
C2 =

C1(2
√

1+ρ− 2+ρ√
A

)

1− 1√
A

(32)

When −1 ≤ ρ ≤ 1
A −1, then token1 becomes depleted, and

the liquidity provider is left with token2:

V ′ =
C1(1 + ρ)

C2
· r′2 = C1 · (1 + ρ) ·

(√
A+ 1

)
(33)

When ρ ≥ A − 1, then token2 becomes depleted, and the
liquidity provider is left with token1:

V ′ = r′1 = C1 ·
(√
A+ 1

)
(34)

The divergence loss can thus be calculated as:

L(ρ) =
V ′

Vheld
− 1

=


(ρ+1)·

√
A−1

2+ρ , −1 ≤ ρ ≤ 1
A − 1

√
1+ρ

1+
ρ
2
−1

1− 1√
A
, 1

A − 1 ≤ ρ ≤ A− 1
√
A−1−ρ
2+ρ , ρ ≥ A− 1

(35)

Note that limA→1 L(A− 1) = 0.
3) Balancer:

a) Conservation function: Balancer implements a con-
servation function with a weighted-product invariant (Fig-
ure 3b). Specifically, the product of reserve quantities each
raised to the power of its weight stays constant with swapping:

C =
∏
k

rwkk (36)

b) Spot exchange rate: Given the quantity ratio r1 : r2

between token1 and 2 and the implicit assumption on their
value ratio w1 : w2, the price of token2 denominated by token1

can be expressed as:

1E2 =
r1 · w2

r2 · w1
(37)

c) Swap amount: We investigate the case when a user
swaps token1 for token2, while the reserves of all other
assets remain untouched in the pool. Based on the Balancer
conservation function (Equation 36), the amount of token2

received x2 (spent when x2 < 0) given amount of token1

spent x1 (received when x1 < 0) can be calculated following
the steps described in III-C3:

r′1 = r1 + x1

r′2 = r2

(
r1

r′1

)w1
w2

x2 = r2 − r′2 (38)



d) Slippage: The slippage that a Balancer user expe-
riences when swapping x1 token1 with x2 token2 can be
expressed as:

S(x1) =
x1/x2

1E2
− 1 =

x1

r1
· w1

w2

1−
(
r1
r′1

)w1
w2

− 1 (39)

Figure 4b illustrates the relationship between Uniswap slip-
page and normalized token1 reserve change x1

r1
.

e) Divergence loss: Given the constant value ratio as-
sumption with Balancer, the value of the entire pool V can be
expressed by the reserve quantity of token 1, r1 divided by its
weight w1 (token1 being numéraire):

V =
V1

w1
=
V2

w2
=
Vk
wk

=
r1

w1
(40)

If token2 appreciates by ρ (depreciates when ρ < 0) while
all other tokens’ prices remain unchanged, the total value of
the original reserve composition, when held outside of the
pool, Vheld becomes:

Vheld = V + V2 · ρ = V · (1 + w2 · ρ) (41)

With r1 token1 and r2 token2 locked in a liquidity pool from
the beginning, their quantity ratio would have been updated
through users’ swapping to result in token2’s price change
of ρ. The value ratio between the pool, token1 and token2,
remains 1 : w1 : w2, and the updated pool value V ′ becomes:

V ′ =
V ′1
w1

=
r′1
w1

=
r1 · (1 + ρ)w2

w1
= V · (1 + ρ)w2 (42)

The exchange rate range corresponds the liquidity provider’s
range requirement. Specifically, when r′2 = r2

(1+ρ)1−w2
and

r′k = rk · (1 + ρ)w2 for k 6= 2, reflecting the assumed scenario
that only the value of token2 appreciates by ρ, while the value
of all other tokens against token1 remains unchanged.

As illustrated in Figure 5b, the divergence loss due to
liquidity provision as opposed to holding can thus be expressed
as a function of price change:

L(ρ) =
V ′

Vheld
− 1 =

(1 + ρ)w2

1 + w2 · ρ
− 1 (43)

4) Curve:
a) Conservation function: As assets from the same pool

are connected to the same peg by design, the ideal exchange
rate between them should always equal 1. Theoretically, this
could be achieved by a constant-sum invariant. Nevertheless,
Curve seeks to allow an exchange rate to deviate from 1, in
order to reflect the supply-demand dynamic, while simultane-
ously keeping the slippage low.

Curve achieves this by interpolating between two invariants,
constant sum and constant product [10], with hyperparameter
A as the interpolating factor (Equation 44).8 When A → 0, the
conservation function boils down to a constant-product one, as
with Uniswap; when A → +∞, the conservation function is

8Note that A here is equivalent to A · nn in Curve’s white paper [10].

essentially a constant-sum one with constant exchange rate
equal to 1 (Figure 3c).

A
(∑

k

rk

C − 1

)
=

( Cn )
n∏

k

rk
− 1 (44)

b) Spot exchange rate: Rearrange Equation 44 and let

Z(r1, r2) =
( Cn )

n

r1r2
∏

k 6=1,2

rk
− 1−A

(
r1+r2+

∑
k 6=1,2

rk

C − 1

)

Following III-C, the spot exchange rate can be calculated
as:

1E2 = ∂Z(r1,r2)/∂r2
∂Z(r1,r2)/∂r1

=
r1·
[
A·r2·

∏
k

rk+C·( Cn )
n
]

r2·
[
A·r1·

∏
k

rk+C·( Cn )
n
] (45)

c) Swap amount: We investigate the case when a user
swaps token1 for token2, while the reserves of all other
assets remain untouched in the pool. Based on the Curve
conservation function (Equation 44), the amount of token2

received x2 (spent when x2 < 0) given amount of token1

spent x1 (received when x1 < 0) can be calculated following
the steps below:

r′1 = r1 + x1

r′2 =

√√√√√ 4C( Cn )
n

A·
′∏

k 6=2

+

[
(1− 1

A )C−
′∑

k 6=2

]2

+(1− 1
A )C−

′∑
k 6=2

2

x2 = r2 − r′2 (46)

where

′∏
k 6=2

= r′1 ·
∏
k 6=1,2

rk and
′∑

k 6=2

= r′1 +
∑
k 6=1,2

rk (47)

d) Slippage: As illustrated in Figure 4c, the slippage that
a Curve user experiences when swapping x1 token1 with x2

token2 can be expressed as:

S(x1) = x1/x2

1E2
− 1 (48)

=

x1·
[
A·r1·

∏
k
rk+C·( Cn )

n
]

r1·
[
A·r2·

∏
k
rk+C·( Cn )

n
]

1−

√√√√√√√
4C( Cn )

n

a·
′∏

k 6=2

+

(1− 1
a )C−

′∑
k 6=2

2+(1− 1
a )C−

′∑
k 6=2

2r2

− 1

e) Divergence loss: Curve’s divergence loss in full form
cannot be easily presented in a concise and comprehensible
fashion. Therefore, for Curve, we use the generalized method
to calculate its divergence loss as described in III-C. The
divergence loss in the case of a 2-asset pool is presented in
Figure 5c.

5) DODO:



a) Spot exchange rate: As presented in the previous sec-
tions, conventional AMMs derive the exchange rate between
two assets in a pool purely from the conservation function.
DODO does it the other way around: resorting to external
market data as a major determinant of the exchange rate,
DODO has its conservation function derived from its exchange
rate formula.

The exchange rate between the two assets in a DODO pool
is set by the market rate with an adjustment based on the
pool composition. We denote the market exchange rate as P ,
namely 1 token2 = P token1, and the initial reserve for token1

and token2 as C1 and C2 respectively. The formula Equation 49
sets the exchange rate 1E2 higher than the market rate P—
i.e. token2 exhibits higher price in the pool than in the market,
when the reserve of token1 r1 exceeds its initial state C1, and
sets 1E2 lower than P—i.e. token1 more expensive than its
market value, when r1 falls short of C1. Formally,

1E2 =


P

[
1 +A

((
C2
r2

)2

− 1

)]
, r1 ≥ C1

P

/[
1 +A

((
C1
r1

)2

− 1

)]
, r1 ≤ C1

(49)

b) Conservation function: DODO’s conservation func-
tion can be derived from its exchange formula Equation 49.
In particular, the initial state of token1 and token2 reserves, C1
and C2 can be regarded as the two invariants of the conserva-
tion function. This aligns with the definition according to our
framework (Section III), as C1 and C2 remain constant with
swapping activities, but get updated with liquidity provision
or withdrawal.

r1 − C1 =

∫ C2
r2

P
[
1 +A

((C2
δ

)2 − 1
)]

dδ

=P · (C2 − r2) ·
[
1 +A ·

(
C2
r2
− 1
)]
, r1 ≥ C1 (50)

r2 − C2 =

∫ C1
r1

1 +A
((C1

δ

)2 − 1
)

P
dδ

=
(C1 − r1) ·

[
1 +A ·

(
C1
r1
− 1
)]

P
, r1 ≤ C1 (51)

In the special case of A = 1, when C1 = P · C2, i.e.
liquidity provided on both assets are of equal value, then
DODO’s conservation function is equivalent to Uniswap, with
r1 · r2 = C1 · P · C2. This can be observed from Figure 3,
where the DODO’s conservation function curve with A → 1
appears identical to that of Uniswap.

c) Swap amount: The swap amount can be derived
directly from the DODO conservation function (Equation 50):

r′1 = r1 + x1

r′2 =


C1−r

′
1+P ·C2·(1−2A)+√

[C1−r′1+P ·C2·(1−2A)]2+4A·(1−A)·(P ·C2)2

2P ·(1−A) , r′1 ≥ C1

C2 +
(C1−r′1)·

[
1+A·

(
C1
r′1
−1

)]
P , r′1 ≤ C1

x2 = r2 − r′2 (52)

d) Slippage: As illustrated in Figure 4d, the slippage that
a DODO user experiences when swapping x1 token1 with x2

token2 can be expressed as:

S(x1) = (53)
2·(1−A)·x1

r′1−C1+C2·P−√
[C1−r′1+P ·C2·(1−2A)]2+4A·(1−A)·(P ·C2)2

− 1, r′1 ≥ C1

x1

(r′1−C1)·
[
1+A·

(
C1
r′1
−1

)] − 1, r′1 ≤ C1

e) Divergence loss: DODO eliminates the kind of di-
vergence loss seen in previously discussed protocols by not
forcing liquidity providers to deposit tokens in pre-defined
ratios. This is achieved by leveraging price oracles, which
allow liquidity providers to deposit an arbitrary combination of
base and quote tokens, unlocking single-token exposure. The
price oracle is used to protect LPs against heavy arbitrage.
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